В НИУ ВШЭ состоялась конференция по машинному обучению Fall into ML 2023
В течение трех дней более 300 участников конференции посетили тематические воркшопы, семинары, секции и постерную сессию. В ходе панельных дискуссий эксперты обсудили регулирование технологий искусственного интеллекта (ИИ) и то, какие мегапроекты могут делать университеты совместно с индустрией для развития ИИ.
Конференция объединила представителей фундаментальной науки (ВШЭ, МГУ, РАН, МФТИ, ИТМО, Сколтех, НГУ), индустрии (Сбер, «Яндекс») и государства (АНО «Цифровая экономика»).
Иван Аржанцев
Выступая на открытии конференции, Иван Аржанцев, декан факультета компьютерных наук НИУ ВШЭ, отметил, что Fall into ML является значимым событием не только для факультета, но и для всего университета. «С момента создания ФКН мы хотели, чтобы в Вышке проходила международная конференция по машинному обучению самого высокого уровня. Ее инициатором стал Алексей Наумов (заведующий Международной лабораторией стохастических алгоритмов и анализа многомерных данных — Ред.), который предложил собрать на мероприятии ученых, уже выступающих на ведущих международных площадках. И все получилось», — сказал он.
В этом году на Fall into ML собралось более 50 авторов публикаций на конференциях уровня А* — флагманских событиях этой области. В течение трех дней более 300 участников конференции посетили тематические воркшопы, панельные дискуссии, секции и постерную сессию.
На воркшопе «Диагностика нейронных сетей» были представлены подходы к управлению процессами, происходящими при обучении нейронных сетей. Семинар «ИИ в физике» был посвящен проблеме описания динамических систем с использованием методов машинного обучения. В рамках воркшопа «Обучение с подкреплением» спикеры обсудили вопросы построения эффективных алгоритмов обучения с подкреплением и их практическое приложение. На секции «ИИ в медицине» были рассмотрены методы искусственного интеллекта, которые применяются для анализа медицинских данных.
Мария Попцова
«В одну секцию невозможно вместить всю проблематику, которая существует в медицинских задачах. Но нам удалось собрать на конференции важных игроков этой области с разнородными докладами, объединенными общей темой, — рассказывает Мария Попцова, заведующая Международной лабораторией биоинформатики Института искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ. — Алгоритмы машинного обучения не только используются для анализа большого объема данных и помогают врачам в постановке диагноза, но и предлагают оптимальные варианты лечения, учитывая множество факторов, а также позволяют прогнозировать заболевания. Тема ИИ в медицине актуальна, так как предлагает множество возможностей для улучшения качества здравоохранения, повышения точности диагностики и персонализированного подхода к лечению пациентов».
Панельные дискуссии на Fall into ML 2023 стали площадкой свободного общения ученых. В рамках дискуссии «Сильный ИИ: риски и преимущества» были рассмотрены ключевые аспекты сильного искусственного интеллекта, от его определения и потенциала до этических и социальных вопросов, а также рисков, связанных с его развитием, включая вопросы конфиденциальности, безопасности и автономии.
«Одним из вопросов, который волнует нас всех, является регулирование технологий искусственного интеллекта, — отмечает Карен Казарян, директор по аналитике АНО «Цифровая экономика». — В разных сферах мы видим, как различные алгоритмы заменяют человека, выполняя задачи в разы сложнее и лучше, чем он. Объем внедрения технологий во всех сферах растет, работа моделей автоматизируется без участия человека. При этом никто не может исключить риск программной ошибки, а также риски информационной безопасности. Исходя из текущего уровня технологического прогресса и диапазона стратегического планирования, сильный искусственный интеллект пока недостижим. Но уже сейчас мы вырабатываем подходы с учетом рисков в той или иной отрасли для безопасного внедрения технологий искусственного интеллекта. В рамках дискуссии на конференции Fall into ML 2023 удалось обсудить преимущества и риски, которые несет искусственный интеллект».
В ходе дискуссии «Наука в академии и в индустрии» эксперты обсудили, какие мегапроекты могут делать университеты совместно с индустрией для развития технологий искусственного интеллекта. Как было отмечено, развитие науки и индустрии в области искусственного интеллекта должно быть неотрывным, чтобы обеспечить взаимовыгодное сотрудничество, инновационные решения и этические стандарты для развития данной области.
«В рамках дискуссии мы с коллегами обсудили необходимость развития теории машинного обучения. Сейчас теория в этой области находится в зачаточном состоянии, но ее особенно не хватает для создания доверенных интеллектуальных систем. И чем больше мы будем видеть внедрений ИИ, тем больше эта проблема будет назревать. Например, при создании беспилотных автомобилей разработчики пока не могут гарантировать, что алгоритм не даст сбой при очень маловероятных событиях, которые не были учтены при обучении модели, — поясняет Денис Турдаков, руководитель Исследовательского центра доверенного искусственного интеллекта ИСП РАН. — Поэтому академия, включая исследовательские центры, и индустрия должны синхронизироваться по этому вопросу. Конференция Fall into ML предоставила площадку для взаимодействия ученых, работающих как в академии, так и в индустрии. Нам удалось не только обозначить актуальные направления развития искусственного интеллекта, но и обсудить карьерные возможности молодых ученых в современном мире».
В постерной сессии приняли участие все авторы докладов. Участники представили свои исследования, результаты работы, новые технологии и методы в области искусственного интеллекта в виде постеров с краткой информацией о работе, ее цели, методах и результатах.
Инна Колинко, UserGate, Институт математики СО РАН, Новосибирский государственный университет:
— Самое большое впечатление на меня произвели мини-курс Елизаветы Гончаровой и Владимира Архипкина “Multimodal multitask models as a tool for generative artificial intelligence”, доклады Ольги Цымбой и Ивана Оселедеца “Layerwise Universal Adversarial Attack On NLP Models” и Дениса Кузнеделева “SpQR: A Sparse-quantized Representation For Near- Lossless LLM Weight Compression”. Хочу отметить прекрасную организацию самой конференции, были замечательные кофе-брейки, очень понравился формат дискуссий.
Николай Смольянов, ИТМО:
— Конференция прошла очень продуктивно. Как начинающий специалист в области машинного обучения я узнал много нового как в профессиональных компетенциях (мультимодальные модели, различные приложения нейронных сетей), так и в понимании угроз, преимуществ, особенностей сферы искусственного интеллекта. Видно, что в конференции принимают участие эксперты с огромным опытом, очень интересно слушать. Организация мероприятия на высшем уровне, спасибо!
Николай Плюта, НИУ МГСУ:
— Организация на высшем уровне, другого от ВШЭ и не ожидалось! Я начинающий в ML, но большинство выступлений смог понять и обработать — очень доступно и понятно. Хотелось бы поучаствовать и в следующем году.
Сергей Кудряшов, НИУ ВШЭ:
— Очень впечатляюще! Отличная возможность посмотреть на то, что происходит в смежных областях, и придумать новые подходы к собственным исследованиям.
Марина Микитчук, Vega Institute Foundation, МШЭ МГУ, ЦЭМИ РАН:
— Конференция Fall into ML 2023 оставила самые невероятные впечатления! Огромное спасибо организаторам за высочайший уровень докладов, за очень дружелюбную атмосферу и возможности для новых дискуссий.
Видео можно посмотреть на официальном сайте конференции.
Кудряшов Сергей Юрьевич
Вам также может быть интересно:
В Вышке создали собственную MLOps-платформу
Ученые НИУ ВШЭ создали MLOps-платформу SmartMLOps. Она предназначена для исследователей в области искусственного интеллекта, которые хотели бы превратить свое изобретение в полноценный сервис. В будущем на платформе могут быть развернуты ИИ-помощники для упрощения образовательного процесса, оказания медицинской помощи, консультирования и решения многих других задач. Создатели ИИ-технологий смогут получить готовый к работе сервис в течение считанных часов. На суперкомпьютере Вышки этот сервис может быть запущен в несколько кликов.
«От нашей общей работы зависит будущее»: что несет человечеству развитие ИИ
Какие перспективы и вызовы для человечества несет развитие технологий искусственного интеллекта? Как его используют ученые? Каким будет мир, где доминирует ИИ? Эти и другие темы обсудили эксперты на форсайт-сессии «Будущее исследований в сфере искусственного интеллекта», которая прошла в НИУ ВШЭ.
ИИ позволит точно моделировать производительность систем хранения данных
Исследователи факультета компьютерных наук НИУ ВШЭ разработали новый подход к моделированию систем хранения данных на основе генеративных моделей машинного обучения. Он позволяет с высокой точностью предсказывать ключевые характеристики работы таких систем при различных условиях. Результаты опубликованы в журнале IEEE Access.
ИИ в образовании: как преодолеть соблазн готовых решений
Искусственный интеллект уже стал обыденностью для молодежи: как показал опрос, около 87% студентов ведущих вузов используют ИИ в процессе обучения. Большая часть из них отметила, что он помогает им экономить время, при этом они проверяют сделанную ИИ работу. Результаты исследования были представлены на конференции по анализу данных и технологиям ИИ Data Fusion. В ее работе приняли участие научный руководитель НИУ ВШЭ Ярослав Кузьминов и другие эксперты Вышки.
Большинство студентов не верят, что ИИ сможет заменить их на работе
Большинство студентов считают, что ИИ не сможет заменить их на работе в ближайшие десять лет. Низким такой риск называют 27,2% респондентов, 41,5% — крайне маловероятным. Эти оценки были получены НИУ ВШЭ в ходе опроса 4200 студентов в 2025 году. Они приводятся в докладе «Эпоха больших языковых моделей: почему они все еще не профессионалы», подготовленном научным руководителем НИУ ВШЭ Ярославом Кузьминовым и старшим преподавателем кафедры высшей математики НИУ ВШЭ Екатериной Кручинской. Доклад был представлен на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества, которая проходит с 15 по 18 апреля в НИУ ВШЭ.
Точный ИИ-оракул: какие тренды интересуют бизнес
Современные технологии ежедневно меняют мир, автоматизируя бизнес-процессы в различных отраслях. Специалисты НИУ ВШЭ представили масштабный опыт команды iFORA по реализации ИИ-проектов в интересах крупных компаний и органов власти.
Перспективы ИИ: математика машинного обучения в фокусе
Институт искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ провел выездной воркшоп «Математика машинного обучения». Здесь собрались ведущие ученые и специалисты НИУ ВШЭ в области машинного обучения, математики и статистики. В центре внимания исследователей оказались математические аспекты, лежащие в основе современных и наиболее перспективных направлений машинного обучения. Программа воркшопа включала мини-курсы, практические работы, доклады и круглый стол, посвященный перспективам развития ИИ в России.
Внедрение искусственного интеллекта в организации: какие эффекты отмечают сотрудники
45% организаций, которые занимались внедрением ИИ в работу, заявили о повышении производительности труда в результате его использования. Об этом говорится в исследовании «Внедрение ИИ в работу организаций: чем обусловлена вариация эффектов на труд?». Исследование проведено директором Центра статистики труда и заработной платы ИСИЭЗ НИУ ВШЭ Анной Демьяновой и стажером-исследователем центра Дарьей Талакаускас. Оно было презентовано на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества (XXV ЯМНК), проходящей в НИУ ВШЭ с 15 по 18 апреля.
«Идею всегда задает человек»: что дает ИИ образованию и медиа
ИИ-технологии меняют принципы работы образования и медиаиндустрии. Большинство студентов уже в той или иной мере используют ИИ, а нейросети уже массово производят все виды контента. Возможности и вызовы эксперты обсудили на конференции «Образование и медиа в эпоху цифровых перемен», организованной Дирекцией по маркетинговым коммуникациям НИУ ВШЭ и «Яндекс Образованием».
В Вышке стартовали открытые семинары «ИИ в индустрии»
Институт искусственного интеллекта и цифровых наук факультета компьютерных наук НИУ ВШЭ запустил цикл открытых семинаров. Встречи посвящены актуальным вопросам внедрения искусственного интеллекта в различные отрасли экономики. Семинары проводятся еженедельно в 18:00 в кампусе на Покровском бульваре. Для участников также предусмотрена онлайн-трансляция.