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Clifford geometric algebra (GA)

Let us consider the real Clifford geometric algebra (GA) Gp,q with the identity
element e ≡ 1 and the generators ea, a = 1, 2, . . . , n, where n = p + q ≥ 1:

eaeb + ebea = 2ηabe, η = (ηab) = diag(1, . . . , 1,−1, . . . ,−1).

Consider the subspaces Gk
p,q of grades k = 0, 1, . . . , n, which elements are linear

combinations of the basis elements eA = ea1a2...ak = ea1ea2 · · · eak with ordered
multi-indices of length k . An arbitrary multivector M ∈ Gp,q has the form

M =
∑
A

mAeA ∈ Gp,q, mA ∈ R,

where we have a sum over arbitrary multi-index A of length from 0 to n. The
projection of M onto the subspace Gk

p,q is denoted by ⟨M⟩k .
The grade involution and reversion of a multivector M ∈ Gp,q are denoted by

M̂ =
n∑

k=0

(−1)k⟨M⟩k , M̃ =
n∑

k=0

(−1)
k(k−1)

2 ⟨M⟩k (1)

M̂1M2 = M̂1M̂2, M̃1M2 = M̃2M̃1, ∀M1,M2 ∈ Gp,q. (2)
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Euclidean space on GA

Let us consider an operation of Hermitian conjugation † in Gp,q:

M† := M|eA→(eA)−1 =
∑
A

mA(eA)
−1. (3)

We have the following two other equivalent definitions of this operation:

M† =

{
e1...pM̃e−1

1...p, if p is odd,

e1...p
˜̂
Me−1

1...p, if p is even,
=

{
ep+1...nM̃e−1

p+1...n, if q is even,

ep+1...n
˜̂
Me−1

p+1...n, if q is odd.
(4)

The operation
(M1,M2) := ⟨M†

1M2⟩0 ≥ 0

is a (positive definite) scalar product. Using this scalar product we introduce inner
product space over the field of real numbers (euclidean space) in Gp,q. We have a
norm

||M|| :=
√
(M,M) =

√
⟨M†M⟩0 (5)
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Matrix representation of Gp,q

Let us consider the following faithful representation (isomorphism) of the real
geometric algebra Gp,q

β : Gp,q →



Mat(2
n
2 ,R), if p − q = 0, 2 mod 8,

Mat(2
n−1
2 ,R)⊕ Mat(2

n−1
2 ,R), if p − q = 1 mod 8,

Mat(2
n−1
2 ,C), if p − q = 3, 7 mod 8,

Mat(2
n−2
2 ,H), if p − q = 4, 6 mod 8,

Mat(2
n−3
2 ,H)⊕ Mat(2

n−3
2 ,H), if p − q = 5 mod 8.

(6)

These isomorphisms are known as Cartan–Bott 8-periodicity.
Let us denote the size of the corresponding matrices by

d :=


2

n
2 , if p − q = 0, 2 mod 8,

2
n+1
2 , if p − q = 1 mod 8,

2
n−1
2 , if p − q = 3, 5, 7 mod 8,

2
n−2
2 , if p − q = 4, 6 mod 8.

(7)

Note that we use block-diagonal matrices in the cases p − q = 1, 5 mod 8.
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Let us present an explicit form of one β′ of these representations of Gp,q. We have
β′(e) = I and β′(ea1a2...ak ) = β′(ea1)β

′(ea2) · · ·β′(eak ).
In some particular cases, we construct β′ in the following way:

In the case G0,1: e1 → i .
In the case G1,0: e1 → diag(1,−1).
In the case G0,2: e1 → i , e2 → j .
In the case G0,3: e1 → diag(i ,−i), e2 → diag(j ,−j), e3 → diag(k,−k).

Suppose we know β′
a := β′(ea), a = 1, . . . , n for some fixed Gp,q, p + q = n. Then

we construct explicit matrix representation of Gp+1,q+1, Gq+1,p−1, Gp−4,q−4 in the
following way using the matrices β′

a, a = 1, . . . , n.
In the case Gp+1,q+1: ea → diag(β′

a,−β′
a), a = 1, . . . , p, p + 2, . . . , p + q + 1.

In the subcase p − q ̸= 1 mod 4, we have

ep+1 →
(

0 I
I 0

)
, ep+q+2 →

(
0 −I
I 0

)
.

In the subcase p − q = 1 mod 4, we have

ep+1 → diag(β1 · · ·βnΩ,−β1 · · ·βnΩ), ep+q+2 → diag(Ω,−Ω), Ω =

(
0 −I
I 0

)
.

In the case Gq+1,p−1: e1 → β′
1, ei → β′

iβ
′
1, i = 2, . . . , n.

In the case Gp−4,q+4: ei → β′
iβ

′
1β

′
2β

′
3β

′
4, i = 1, 2, 3, 4, ej → β′

j , j = 5, . . . , n.
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It can be directly verified that for this matrix representation we have

ηaaβ
′(ea) =


(β′(ea))

T, if p − q = 0, 1, 2 mod 8,
(β′(ea))

H, if p − q = 3, 7 mod 8,
(β′(ea))

∗, if p − q = 4, 5, 6 mod 8,
a = 1, . . . , n, (8)

where T is transpose of a (real) matrix, H is the Hermitian transpose of a
(complex) matrix, ∗ is the conjugate transpose of a matrix over quaternions.
Using the linearity, we get that these matrix conjugations are consistent with
Hermitian conjugation of corresponding multivector:

β′(M†) =


(β′(M))T, if p − q = 0, 1, 2 mod 8,
(β′(M))H, if p − q = 3, 7 mod 8,
(β′(M))∗, if p − q = 4, 5, 6 mod 8,

M ∈ Gp,q. (9)

Note that the formulas like (9) are not valid for an arbitrary matrix representation
β of the form (6). They are true for the matrix representations γ = T−1β′T
obtained from β′ by the matrix T such that

TTT = I in the cases p − q = 0, 1, 2 mod 8,
THT = I in the cases p − q = 3, 7 mod 8,
T ∗T = I in the cases p − q = 4, 5, 6 mod 8.
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Lie groups

Let us consider the following Lie group in Gp,q

GGp,q = {M ∈ Gp,q : M†M = e}. (10)

Note that all the basis elements eA of Gp,q belong to this group by the definition.
Using (6) and (9), we get the following isomorphisms of this group to the classical
matrix Lie groups:

GGp,q ≃



O(2
n
2 ), if p − q = 0, 2 mod 8,

O(2
n−1
2 )× O(2

n−1
2 ), if p − q = 1 mod 8,

U(2
n−1
2 ), if p − q = 3, 7 mod 8,

Sp(2
n−2
2 ), if p − q = 4, 6 mod 8,

Sp(2
n−3
2 )× Sp(2

n−3
2 ), if p − q = 5 mod 8,

(11)

where we have the following notation for (orthogonal, unitary, and simplectic
correspondingly) classical matrix Lie groups

O(k) = {A ∈ Mat(k ,R) : ATA = I}, (12)
U(k) = {A ∈ Mat(k ,C) : AHA = I}, (13)
Sp(k) = {A ∈ Mat(k ,H) : A∗A = I}. (14)
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Singular value decomposition (SVD)

Theorem

For an arbitrary A ∈ Rn×m, there exist matrices U ∈ O(n) and V ∈ O(m) such
that

A = UΣVT, (15)

where

Σ = diag(λ1, λ2, . . . , λk), k = min(n,m), R ∋ λ1, λ2, . . . , λk ≥ 0.

Note that choosing matrices U ∈ O(n) and V ∈ O(m), we can always arrange
diagonal elements of the matrix Σ in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

Diagonal elements of the matrix Σ are called singular values, they are square roots
of eigenvalues of the matrices AAT or ATA. Columns of the matrices U and V
are eigenvectors of thematrices AAT and ATA respectively.
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Theorem

For an arbitrary A ∈ Cn×m, there exist matrices U ∈ U(n) and V ∈ U(m) such
that A = UΣVH, where

Σ = diag(λ1, λ2, . . . , λk), k = min(n,m), R ∋ λ1, λ2, . . . , λk ≥ 0.

Note that choosing matrices U ∈ U(n) and V ∈ U(m), we can always arrange
diagonal elements of the matrix Σ in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

Diagonal elements of the matrix Σ are called singular values, they are square roots
of eigenvalues of the matrices AAH or AHA. Columns of the matrices U and V
are eigenvectors of the matrices AAH and AHA respectively.

Theorem

For an arbitrary A ∈ Hn×m, there exist matrices U ∈ Sp(n) and V ∈ Sp(m) such
that A = UΣV ∗, where

Σ = diag(λ1, λ2, . . . , λk), k = min(n,m), R ∋ λ1, λ2, . . . , λk ≥ 0.

Diagonal elements of the matrix Σ are called singular values.
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Theorem (SVD in GA)

For an arbitrary multivector M ∈ Gp,q, there exist multivectors U,V ∈ GGp,q,
where

GGp,q = {U ∈ Gp,q : U†U = e}, U† :=
∑
A

uA(eA)
−1,

such that

M = UΣV †, (16)

where multivector Σ belongs to the subset K of Gp,q, which is real span of a set of
d fixed basis elements (always including the identity element e):

Σ ∈ K := span({eBi , i = 1, . . . , d}) = {
d∑

i=1

λieBi , λi ∈ R}, (17)

d :=


2

n
2 , if p − q = 0, 2 mod 8,

2
n+1
2 , if p − q = 1 mod 8,

2
n−1
2 , if p − q = 3, 5, 7 mod 8,

2
n−2
2 , if p − q = 4, 6 mod 8.

(18)
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Thus the meaning of SVD in geometric algebra is the following:

after multiplication on the left and on the right by elements of the group GGp,q,
any multivector M ∈ Gp,q, dimGp,q = 2n, can be placed in a d-dimensional
subspace K of Gp,q, where d is

d :=


2

n
2 , if p − q = 0, 2 mod 8,

2
n+1
2 , if p − q = 1 mod 8,

2
n−1
2 , if p − q = 3, 5, 7 mod 8,

2
n−2
2 , if p − q = 4, 6 mod 8.
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Example

In the case G2,0, we have

β′(e) =

(
1 0
0 1

)
, β′(e1) =

(
0 1
1 0

)
, β′(e2) =

(
−1 0
0 1

)
, β′(e12) =

(
0 1
−1 0

)
.

The matrices β′(e) and β′(e2) are real and diagonal, we get the 2-dimensional
subspace

K = span(e, e2).

Example

In the case G2,1, the matrices β′(e), β′(e1), β′(e23), and β′(e123) are real and
diagonal. We get the 4-dimensional subspace

K = span(e, e1, e23, e123).

Example

In the case G1,3, the matrices β′(e), β′(e14) are real and diagonal. We get the
2-dimensional subspace

K = span(e, e14).
Dmitry Shirokov (dm.shirokov@gmail.com) Yakutsk, 2024 12 / 17



Theorem (Polar decomposition)

For an arbitrary A ∈ Rn×n, there exist positive semi-definite symmetric matrices P
and S ∈ Rn×n (i.e. PT = P and zTPz ≥ 0, ∀z ∈ Rn; ST = S and zTSz ≥ 0,
∀z ∈ Rn) and matrix W ∈ O(n) such that

A = WP = SW . (19)

Given a real symmetric matrix P, the following statements are equivalent:
P is positive semi-definite,
all the eigenvalues of P are non-negative,
there exists a matrix B such that P = BTB.

If we have SVD of the real matrix A = UΣVT, then we can take W = UVT,
P = VΣVT, and S = UΣUT. Note that P =

√
ATA and S = WPWT =

√
AAT.

Theorem

For an arbitrary A ∈ Cn×n, there exist positive semi-definite Hermitian matrices P
and S ∈ Cn×n (i.e. PH = P and zHPz ≥ 0, ∀z ∈ Cn; SH = S and zHSz ≥ 0,
∀z ∈ Cn) and matrix W ∈ U(n) such that

A = WP = SW . (20)
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Given a complex Hermitian matrix P, the following statements are equivalent:
P is positive semi-definite,
all the eigenvalues of P are non-negative,
there exists a matrix B such that P = BHB.

If we have SVD of the complex matrix A = UΣVH, then we can take W = UVH,
P = VΣVH, and S = UΣUH. Note that P =

√
AHA and S = WPWH =

√
AAH.

Theorem

For an arbitrary A ∈ Hn×n, there exist quaternion positive semi-definite Hermitian
matrices P and S ∈ Hn×n (i.e. P∗ = P and z∗Pz ≥ 0, ∀z ∈ Hn; S∗ = S and
z∗Sz ≥ 0, ∀z ∈ Hn) and matrix W ∈ Sp(n) such that

A = WP = SW . (21)

Given a quaternion Hermitian matrix P, the following statements are equivalent:
P is positive semi-definite,
all the eigenvalues of P are non-negative,
there exists a matrix B such that P = B∗B.

If we have SVD of the quaternion matrix A = UΣV ∗, then we can take
W = UV ∗, P = VΣV ∗, and S = UΣU∗. Note that P =

√
A∗A and

S = WPW ∗ =
√
AA∗.
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Theorem (Left and right polar decomposition in GA)

For an arbitrary multivector M ∈ Gp,q, there exist multivectors P,S ∈ Gp,q such
that

P† = P, S† = S , U† :=
∑
A

uA(eA)
−1, (22)

P = B†B, S = C †C for some multivectors B,C ∈ Gp,q,, (23)

and multivector
W ∈ GGp,q = {U ∈ Gp,q : U†U = e}

such that
M = WP = SW .

Note that

P =
√
M†M, S = WPW † =

√
MM†. (24)

If we have the SVD of multivector M = UΣV † (16), then

W = UV †, P = VΣV †, S = UΣU†. (25)
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Conclusions

We naturally implement SVD and polar decomposition in GA without using
the corresponding matrix representations. The new theorems involve only
operations in geometric algebras. The polar decomposition is a consequence
of the SVD.
We use matrix representations in the proofs, namely, we use the classical
SVD and polar decomposition of real, complex, and quaternion matrices. It
could be interesting to investigate, in a future work, alternative and more
direct proofs involving only operations in the corresponding GA.
We do not present a method (algorithm) to find the SVD in GA. We present
an existing theorem. How to find elements Σ, U, and V using only the
methods of GA and without using the corresponding matrix representations is
a good task for further research. The problems of numerical accuracy and
computation speed can also be considered.
We expect the use of the theorems in different applications of GA in
computer science, engineering, physics, big data, machine learning, etc.
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